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Abstract
Widely available weather forecasts are created
using Numerical Weather Prediction (NWP) mod-
els that are highly complex and also a source of
uncertainties due to the chaotic nature of the equa-
tions that govern the atmosphere. In our work we
focus on the performance of machine learning
models that have a potential to outperform NWP
models. Specifically, they attempt to circumvent
the limits of chaotic equations by using a data-
driven approach. We evaluate the performance of
three different architectures by comparing them
to a simple CNN baseline network, and also to
the state-of-the-art numerical models. We find
that the ConvLSTM network achieves the best
performance, beating both the U-Net and VGG-
16 architectures, which struggle to improve upon
the baseline. However, the NWP models still out-
perform our models by a large margin on a three
day forecast.

1. Introduction
Weather forecasting has been around since the 19th century
when a heavy storm caused the loss of a ship named Royal
Charter. This inspired 2 navy officers to set up a commu-
nication chain of telegraphs to transmit daily information
about weather serving as a gale warning service to prevent
similar disasters. Nowadays, we use Numerical Weather
Prediction (NWP) to generate the daily forecasts you see
all around you.

The atmosphere is a fluid which allows us to construct
complex mathematical models using fluid dynamics and
thermodynamics, which given the precise state of the atmo-
sphere at the current time are able to calculate an "accurate"
weather forecast (Richardson, 1922). However, even these
accurate models have a flaw, where it’s impossible to solve
certain partial differential equations that govern the atmo-
sphere exactly due to its chaotic nature (measurement and
processing noise), and so even the best models with correct
inputs will not be reliable for long term predictions.

Machine learning weather prediction tries to work around
this uncertainty by using a data-driven approach to construct
the model, mapping exogenous input to a target output with-
out requiring a complex understanding of the underlying
physical processes built into the model. We will be work-
ing with deep learning models as they engineer their own
features during training time (LeCun, 2015), therefore we

do not require domain knowledge that would be necessary
to hand-craft meaningful features.

2. Task and data
2.1. Original MIDAS dataset

Initially, we were planning to use the Met Office Inte-
grated Data Archive System (MIDAS) dataset collection1,
which contains 17 datasets of daily, hourly, and sub-hourly
weather observations across the UK. While this dataset con-
veniently contained the ground truth and a large time range
of data, our evaluation would be limited to our own base-
line. The data was also only labeled by a weather station id,
not a geographical location of the station, and not all years
contained the data for all stations. For us to be able to use
geographically connected data, then, a lot of preprocessing
would have been required with uncertain results.

2.2. ERA5

Instead, we chose to use the same dataset as (Rasp et al.,
2020) in order to be able to compare our models with their
baselines. The raw data comes from the ERA5 climate
reanalysis archive2 produced by ECMWF, and contains
hourly data on several weather parameters from the year
1979 onward.

Reanalysis means that archive weather observations have
been re-analysed using ECMWF’s forecast models and data
assimilation systems to produce global data for the entire
world, including the gaps with no weather stations. This
largely solves the issue we observed with MIDAS since it
only provided discrete weather station data. ERA5, on the
other hand, leaves no gaps in the data for the entire Earth,
but rather provides an estimate of uncertainty, seeing as the
data cannot technically be considered ground truth. This is
very important for using the data as input for a CNN, which
relies on seeing the full scope of the data rather than just
some parts.

Since downloading the raw data takes weeks, we opted for
using the already pre-processed datasets provided by (Rasp
et al., 2020) hosted alongside their WeatherBench project
3. The data resolution is given in degrees of latitude and
longitude, determining the size of the grid that covers the
data for the entire Earth. While the original ERA5 data has

1https://catalogue.ceda.ac.uk/uuid/
220a65615218d5c9cc9e4785a3234bd0

2https://climate.copernicus.eu/climate-reanalysis
3https://github.com/pangeo-data/WeatherBench

https://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
https://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
https://climate.copernicus.eu/climate-reanalysis
https://github.com/pangeo-data/WeatherBench
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resolution of 0.25◦×0.25◦ and most atmospheric parameters
on 37 pressure levels, this takes up terabytes of disk space,
making it unfeasible for us to work with. Instead, the pre-
processed data we used had a 5.625◦×5.625◦ resolution and
most atmospheric parameters on only 11 pressure levels.
This meant the data was laid out in a 64 × 64 grid instead
of 1440 × 1440, resulting in over a 500-fold decrease in
resolution and a convenient power-of-two size, which can
slightly improve the performance of the model. Even with
such a significant reduction in resolution, though, many
datasets took up over 20GB of disk space.

2.3. Research question

We set out to see if it was a viable strategy to predict weather
using machine learning and if so, which architectures and
architectural choices would be the best, as well as how close
we are able to get to the results of the physical NWP models
employed by most weather forecasting services currently.

2.4. Evaluation using RMSE

For the evaluation metric we chose root mean squared er-
ror (RMSE) because, as (Rasp et al., 2020) states, it "is
easy to compute and mirrors the loss used for most ML
applications". More importantly, we chose it because the
original WeatherBench model and the operational models
Rasp et al. use have already been evaluated using RMSE.
Using the same metric allows us to easily and confidently
compare our models with theirs to see if we have managed
to improve upon them or not.

3. Methodology
3.1. Baselines description

For our primary baseline we use the direct CNN model
from (Rasp et al., 2020). It is a 5-layer CNN, where the
hidden layers have 64 channels, kernel size of 5, an ELU
activation with an Adam optimizer and a learning rate of
0.0001. The input and output layers have only two chan-
nels each, representing the Z500 (geopotential) and T850
(temperature) data used for training, which will be further
discussed in section 3.5. With minor modifications dis-
cussed in section 4.1, we use this model as the base for
most of our experiments.

We compare our models performance with fully convolu-
tional baseline models as well as numerical models de-
scribed in (Rasp et al., 2020). The simplest baseline is
persistence forecast, which predicts the forecast for every
day as the weather for the previous day. The all-time clima-
tology uses a mean of of all training data to predict forecasts
for all days. The weekly climatology computes means for
each of the 52 calendar weeks and uses these to predict
forecasts.

Lastly, we also compare our model’s performance with an
operational NWP model and two modified IFS (Integrated
Forecast System) models. The operational model is evalu-

ated using the TIGGE4 forecast archives. The other two IFS
models are IFS42 and IFS63, respectively, which are physi-
cal models that were run with coarser resolution by Rasp
et al. to be more in line with the computational resources
of the neural network model.

3.2. LSTM model

Given our simple CNN baseline we had 2 options to im-
prove baseline network, the more traditional approach of
adding convolutional, pooling and up/down-sampling lay-
ers to increase the network’s size and complexity (which
we did in the U-Net experiment, section 4.6) or introduce a
new type of layer to improve the capabilities of the network
(which we did in the ConvLSTM experiment, section 4.3).

Because the input is 2D time-series data, it is textbook ex-
ample for convolutional long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997; Gers et al., 2000) layer,
as LSTMs are ideally suited for problems with complex
time-dependent structure, such as weather prediction. This
is because LSTM units contain a cell state, which is
propagated forward in time, modulated by gates (learned
weights), which leverage how much to "forget" from the
cell state at the previous time step and how much new in-
formation to "input" to the cell from the data at the current
time step. This enables the cells to make short-term modu-
lations to their state while maintaining long-term behavior
(Weyn, 2019).

(Weyn, 2019) used a single ConvLSTM layer at the start
of a their CNN network (Figure 1) to implement LSTM
network, we have decided to use this approach because it
is easy to implement and has been shown to work. This
required us to change the data loader we use to process
input to our network. The CNN used 4D input (batch size,
width, height, channels), we had to extend it a 5D input
(batch size, time, width, height, channels). As previously
mentioned, we are working with 2D time-series data points,
where width and height are correlated and hence we decided
to use a ConvLSTM layer instead of a simple LSTM one,
as the former was specifically designed to be able to capture
spatio-temporal correlation (Shi et al., 2015) present in our
weather data.

3.3. Lead time selection

The baselines NWP models from (Rasp et al., 2020) are
compared on performance of lead time of 3 and 5 days. To
make our experiments comparable also keeping in mind out
time constraints we have chosen to use the 3-day lead time
as the basis for our experiments.

Originally, we intended to attempt lead time of 14 days as
this is known to be limit of numerical models (Stern. &
Davidson, 2015). However, due to tape drive failure5 at the
ECMWF we were unable to access the data for the baseline
models.

4https://confluence.ecmwf.int/display/TIGGE
5ticket J0144200

https://confluence.ecmwf.int/display/TIGGE
https://confluence.ecmwf.int/display/TIGGE/News
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Figure 1. Original CNN architecture from (Weyn, 2019).

3.4. Training procedure

We have modified the WeatherBench data loader to load
only 3 years at a time for reasons described in section 4.1.
For this reason, rather than re-computing the means and
standard deviations for the purposes of normalization many
times throughout the training, we pre-computed both and
then loaded them from saved files. Data for years 1979 to
2015 were used for training, year 2016 for validation, and
years 2017 and 2018 for testing. Each experiment ran for
100 epochs and we used early stopping with patience of 50
epochs.

3.5. Geopotential and temperature

The primary variables we chose for prediction and model
evaluation were geopotential at 500 hPa pressure level (fur-
ther referred to as Z500), which corresponds to about 5.5km
above sea level, and temperature at 850 hPa pressure level
(further referred to as T850), which corresponds to about
1.5 km above sea level. These two variables are often used
in similar applications for various reasons, such as because
the temperature at 850 hPa is not affected by the surface
(N., 2015). Our primary reason for using specifically these
variables was so that we could compare our models to the
WeatherBench baselines by Rasp et al., as well as other
publications using the same or similar variables, such as
(Weyn, 2019) or (Düben & Bauer, 2018).

4. Experiments
In order to answer our research question, we designed a
number of experiments. Each experiment used the Weath-
erBench framework designed by Rasp et al. as its base
and then made several adjustments, in order to identify the
effects of these adjustments on the performance measure.
These varied from using more or different data, through
varying the configuration of the network and adding new el-
ements such as an LSTM block, to using a different network
architecture altogether and only using the WeatherBench

framework to evaluate our model.

4.1. Modified baseline

The WeatherBench framework implements a data loader
which loads the entirety of the selected dataset (40 years)
into memory at once. This approach works fine for 5.625◦

resolution and using a single level of each geopotential
and temperature, which requires only about 6 GB of RAM.
However, all pressure levels for temperature alone require
about 25 GB of RAM, for instance, which poses some
problems with running the experiments.

Firstly, we were advised not to request more than 12 GB
of RAM for the MLP cluster jobs so we would not hog up
resources for other groups and be able to move up in the
queue. This was important because it often took us 1-2 days
to get a job running even with 12 GB RAM, let alone with a
much higher number. It also meant we had to resort to using
Google Cloud for some of our experiments, where more
RAM meant more credit cost. Lastly, we were originally
imagining experiments with datasets close to 60 GB in size,
making it further unlikely we would ever get in queue on
the cluster and raising the Google Cloud costs significantly.

Our solution was to modify the data loader to only load
3 years at a time instead of 40, resulting in significantly
lower RAM usage. This meant we could comfortably run
our experiments on both the MLP cluster and Google Cloud.
However, it also meant that since we were loading the
data differently from the original baseline, this could have
adverse effects on the model’s performance, which would
invalidate the original baseline provided by WeatherBench.

We modified the original baseline by making it use our
data loader instead of the original one and re-ran the exper-
iment with no further changes. As shown in table 1, the
largest RMSE difference between the original and modi-
fied baselines was mere 3.48% for temperature at 850 hPa.
Therefore, while the resulting model did not have exactly
the same performance as the original baseline, it was very
close and we could continue with experimenting. All fur-
ther experiments used our modified data loader for consis-
tency.

Z500 [m2 s−2] T850 [K]
Original baseline 626.40 2.87
Modified baseline 641.12 2.97
RMSE Difference +2.35% +3.48%

Table 1. Comparison of 3-day forecast baseline RMSE for geopo-
tential at 500 hPa (Z500) and temperature at 850 hPa (T850)
between original and modified baselines.

4.2. CNN for isolated variables with all pressure levels

4.2.1. Motivation

We were initially surprised that Rasp et al. downloaded
and pre-processed 11 pressure levels of geopotential and
temperature data without using all of them. Seeing as we
had this data available, it seemed like a waste not to use
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them, especially since combining a lot of data for training
did not seem to be popular amongst the related works we
have analysed and we wanted to see why. But despite the
fact that most have focused on single-level geopotential,
sometimes along with single-level temperature, some have
used different combinations of data. For instance, Weyn
used 500 hPa geopotential in combination with 700-300
hPa thickness in order to better predict the amplification
and decay of weather systems.

Our hypothesis for using all 11 available pressure levels
for geopotential and temperature, respectively, was that the
dynamics of individual levels depend on each other to an
extent, hence the knowledge of the dynamics of all pressure
levels could give us better understanding of Z500 and T850.

4.2.2. Description

We built two models, one for each variable, and trained
them on all the pressure levels available for each variable.
Each model was then able to predict values for all supplied
pressure levels but was evaluated only on Z500 and T850.

Z500 [m2 s−2] T850 [K]
Baseline 641.12 2.97
Isolated models 621.61 3.02
RMSE Difference −3.04% +1.68%

Table 2. Comparison of 3-day forecast RMSE for isolated models
with all pressure levels of their respective variable compared to
the baseline.

4.2.3. Interpretation and discussion

Unfortunately, as we see in table 2, the isolated-variable
models did not perform significantly better than the baseline
but instead managed to perform worse in the case of tem-
perature prediction. Furthermore, because each model used
about 10 times more data than the baseline, each training
and validation step took about 10 times as long, resulting in
a terrible performance-cost ratio. It is therefore likely that
the models were not able to capture the related dynamics of
all pressure levels or that they are simply not significantly
pronounced hence each level is independent of the others.

The only upside of using these two models was that each
model is able to predict not only Z500 and T850, respec-
tively, but all pressure levels for their respective variable.
This, however, is not particularly useful simply because
most of the other pressure levels are not very useful.

4.3. CNN with ConvLSTM

4.3.1. Motivation

As explained in-depth in section 3.2, one approach to im-
prove the performance of the forecast network is to add
a ConvLSTM layer to capture spatiotemporal correlations
present in our dataset.

4.3.2. Description

We trained a new model by adding a ConvLSTM layer at
the start of the baseline CNN architecture, and changed
the input from 4D to 5D by adding a time step dimension.
Since the output from ConvLSTM is 4D no additional trans-
formation is required. Our model used time steps size of
8 for each sample, meaning 8 hours of continues images
were fed as input with 3 day lead time forecast being the
target.

Z500 [m2 s−2] T850 [K]
CNN Baseline 641.12 2.97
ConvLSTM model 556.77 2.73
RMSE Difference −13.16% −9.19%

Table 3. Comparison of 3-day forecast RMSE for geopotential at
500 hPa (Z500) and temperature at 850 hPa (T850) between CNN
baseline and ConvLSTM model.

4.3.3. Interpretation and discussion

Our reasoning seems to have been correct as just by adding
a single layer at the start of the network we were able
to improve the Z500 baseline by 13% and T850 by 9%.
These results are in-line with (Weyn, 2019), where their
best performing model included a ConvLSTM layer, albeit
their CNN structure was different.

A notable downside to this approach, however, is the model
training and validation time, which increased significantly
when using an LSTM layer. While a validation step in
the CNN-only baseline (section 4.1) took only about 74
seconds, with the added LSTM layer, this increased to
around 717 seconds. Although this is almost a 10-fold
increase in time, we would argue that unless minimizing the
training time is of the essence, the noticeable improvement
that comes with using LSTM is worth the extra cost.

4.4. Varying ConvLSTM network step size with
constant amount of data

4.4.1. Motivation

We wanted to discover whether the performance of the
model improves when the time step data fed to the model
for training is not continuous (continuous meaning every
hour from 1pm to 8pm) but rather non-continuous, with
gaps between each step (e.g. first data point at 1pm, second
at 5pm, third at 9pm and so on). Our reasoning to conduct
this experiment was that having a larger step size could lead
to the trained network being able to capture the underlying
processes better as each sample would have a longer period
from which the data is collected, but the overall amount of
data would be the same.

4.4.2. Description

We compared two models, both using the same LSTM
architecture described in 3.2. The continuous model was
trained using 8 continuous time steps as input with a 3 day
lead time forecast as the target (experiment 4.3). The non-
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continuous model was also trained using 8 data points, but
the time gap between time steps was 4 hours instead of just
1 hour, with the target being the same as in the first model.

Z500 [m2 s−2] T850 [K]
ConvLSTM Baseline 556.77 2.73
Non-continuous model 702.02 3.16
RMSE Difference +26.09% +15.75%

Table 4. Comparison of 3-day forecast RMSE for geopotential
at 500 hPa (Z500) and temperature at 850 hPa (T850) between
models with continuous time steps and non-continuous time steps.

4.4.3. Interpretation and discussion

The non-continuous model performed significantly worse,
even worse than the CNN baseline, meaning the model
was not able to learn the underlying patterns in our dataset.
We think that this is due to the fact that the atmosphere
can sometimes significantly change even in the span of 1
hour. This means that only providing information about it
in 4 hour intervals is not sufficient to be able to capture the
trends and processes that are happening.

4.5. Varying the depth and configuration of the LSTM
model

4.5.1. Motivation

Although not always true, a deeper model with a similar
configuration will usually give better results as long as
problems like vanishing gradients are dealt with. In this ex-
periment, we wanted to test if this holds true for our specific
scenario too. Since a deeper model means longer training
due to a higher number of learnable parameters, we also
wanted to find out what the trade-off between performance
and cost would be in our case, and if training a very deep
model would be worth it or not.

4.5.2. Description

We have used 3 models for this experiment: the baseline
ConvLSTM model from experiment 4.3, and two modified
versions of it. The only thing we varied was the number of
convolution layers within each model, which was 5 for the
baseline and 7 and 12 for the deeper models.

Model (# of Layers) Z500 [m2 s−2] T850 [K]
ConvLSTM Baseline 556.77 2.73
ConvLSTM (7) 550.99 2.68
ConvLSTM (12) 521.57 2.58
RMSE Difference 7 −1.04% −1.93%
RMSE Difference 12 −6.33% −5.50%

Table 5. Comparison of 3-day forecast RMSE for geopotential at
500 hPa (Z500) and temperature at 850 hPa (T850) between 3
ConvLSTM models each with increasing depth.

4.5.3. Interpretation and discussion

Table 5 shows us that depth does indeed matter seeing as
the model with 12 convolution layers outperformed the

Model (# of Layers) # of Parameters Time [s/step]
ConvLSTM Baseline 835,714 717
ConvLSTM (7) 1,040,642 744
ConvLSTM (12) 1,552,962 820
Difference 7 +24.52% +3.77%
Difference 12 +85.83% +14.37%

Table 6. Comparison of the number of parameters and the average
time per validation step between 3 ConvLSTM models each with
increasing depth.

Figure 2. Original U-Net architecture from (Ronneberger et al.,
2015). The architecture of (Larraondo et al., 2019) instead uses
Conv2D with kernel size 3x3 layers of filter sizes 32, 32, 64, 64,
128, 128, 256, 256, 512, 512 in the down sampling part.

baseline by about 6% in both Z500 and T850. The mid-
sized model with 7 layers showed a minor improvement as
well, but this was relatively marginal and insignificant.

In terms of the performance-cost ratio, the largest model
took only about 14% longer per step on average compared
to the baseline despite its significantly larger number of
learnable parameters, as shown in table 6. While these times
are not entirely representative of the whole training time
and they should be taken with a grain of salt, they show that
the increase in time cost is not significant enough to ignore
the improvement in performance. This is especially the case
when we compare these time differences to the nearly 10-
fold increase mentioned in section 4.3 upon introducing an
LSTM layer. In summary, using a deeper network proved to
give improved performance with a relatively insignificant
increase in costs.

4.6. U-Net

4.6.1. Motivation

(Larraondo et al., 2019) compared three different auto-
encoders models at precipitation prediction and showed
that the U-Net (Ronneberger et al., 2015) architecture per-
formed the best. We have decided to test their findings
and use their model architecture, specifically U-Net and
VGG-16, on our task.
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4.6.2. Description

The U-Net (Ronneberger et al., 2015) architecture is
encoder-decoder type of network. The encoders network
learn compressed representation of the input space and how
to decompress it. For weather prediction we hope that the
model learns dynamics of the weather. We use almost iden-
tical version of U-Net to (Larraondo et al., 2019) with the
exception of using root mean square error instead of mean
absolute error for the loss function.

The original model used three layers of geopotential to
predict likelihood of precipitation. We, on the other hand,
use one pressure level of geopotential and one pressure level
of temperature to predict 3 days forecast of these levels.

Z500 [m2 s−2] T850 [K]
CNN Baseline 641.12 2.97
U-Net 689.69 3.10
RMSE Difference +7.5% +4.32%

Table 7. Comparison of 3-day forecast RMSE for geopotential at
500 hPa (Z500) and temperature at 850 hPa (T850) between the
baseline and U-Net.

4.6.3. Interpretation and discussion

Training this model proved to be challenging because ini-
tially the loss function during training exploded to infinity.
However, restarting the training with a different random
seed allowed us to circumvent this problem.

The model was not able to outperform our CNN baseline
but it did have very similar performance without any ar-
chitecture tweaking. It is possible that, for example, with
deeper architecture it would be possible to achieve better
results. This architecture was, however, already 26 times
bigger than our baseline in terms of network parameters.

(Weyn et al., 2020)6 showed that is possible to use a U-
Net-like architecture to outperform the CNN baseline and
even the IFS T42 numerical weather model. Notably, their
U-Net architecture was much smaller than the one that we
have used.

4.7. U-Net with ConvLSTM

4.7.1. Motivation

Goal of this experiment was to verify whether adding Con-
volutional LSTM layer will improve the performance of the
network.

(Azad et al., 2019) showed that their variant, "Bi-
Directional ConvLSTM U-Net with Densley Connected
Convolutions" (BCDU-Net) can outperform U-Net on cer-
tain tasks. We have tried using the BCDU-Net network
on our dataset but this had resulted in very high levels of
RMSE both for Z500 (2434.49, that is 3.80 times higher
than the CNN baseline) and T850 (10.64, 3.58 times higher
than the baseline) for 72 hours forecast.

6This paper was published on March 30, after we have trained
our model.

Therefore we have decided to extend the U-Net architecture
by adding a convolutional LSTM 2D layer at the beginning
of the model. In previous experiments we have seen that
this layer increased performance of the fully convolutional
baseline therefore our hypothesis is that this approach will
work for U-Net as well.

4.7.2. Description

We add ConvLSTM layer at the start of the U-Net model,
otherwise the experiment design remains identical to previ-
ous U-Net experiment.

Z500 [m2 s−2] T850 [K]
U-Net 689.69 3.10
U-Net ConvLSTM 685.50 3.10
RMSE Difference −0.6% 0%

Table 8. Comparison of 3-day forecast RMSE for geopotential at
500 hPa (Z500) and temperature at 850 hPa (T850) between the
U-Net and U-Net with LSTM.

4.7.3. Interpretation and discussion

The RMSE for T850 is identical to previous U-Net results
and in Z500, there was only a marginal decrease from
689.70 to 685.50. Therefore, there was no significant im-
provement compared to pure U-Net. On the contrary, this
model was 7 times slower to train, so it did not prove to be
useful for our application.

4.8. VGG-16

4.8.1. Motivation

VGG-16 model is a well recognised model for image recog-
nition (Simonyan & Zisserman, 2015). It was the second
model (Larraondo et al., 2019) used for precipitation pre-
diction In spite of the results in that work showing that
VGG-16 was outperformed by U-Net, we have decided to
test this model on our task.

4.8.2. Description

VGG-16 and other auto-encoders learn compressed rep-
resentation of data and then use deconvolution layers to
expand this representation back into original data (Hinton
& Salakhutdinov, 2006).

In our task we use auto-encoder design not to learn identity
of the input but rather to learn a future state. This is a harder
task because it forces the network to learn the representation
and the transformation of the data at the same time.

Z500 [m2 s−2] T850 [K]
CNN Baseline 641.12 2.97
VGG-16 3130.57 14.11
RMSE Difference +388.3% 375.1%

Table 9. Comparison of 3-day forecast RMSE for geopotential at
500 hPa (Z500) and temperature at 850 hPa (T850) between the
baseline and VGG-16.
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Figure 3. VGG-16 architecture from (Larraondo et al., 2019). The
network has to learn a compressed representation of input that fits
the mid-block.

4.8.3. Interpretation and discussion

Clearly this model was not able to capture the dynamics of
our data. This is interesting because both models are use in
(Larraondo et al., 2019), where VGG-16 performed worse
than U-Net but not by such a huge margin.

However, as stated before, our task and data were different
from (Larraondo et al., 2019). VGG-16 model works by
learning reduced representation of state and then upsam-
pling this representation to its original shape. This method
might not be optimal for our task. We speculate that U-Net
performs better because it uses the copy operations to pre-
serve the identity of the previous layers. Thus, the spatial
reconstruction might be easier for U-Net.

5. Related work
State of the art methods for weather prediction use numeri-
cal methods, so there have only been a couple of papers that
try to directly use machine learning for weather prediction.
We suspect this might be because numerical methods are
highly tuned and optimized and thus hard to out-perform.

There are some works that try to combine machine learning
with numerical models. (Rodrigues et al., 2018) uses con-
volutional neural networks to upsample low resolution out-
put of numerical methods into high resolution predictions.
(Scher & Messori, 2018) used CNN to predict uncertainty
of the forecasts.

(Scher, 2018) showed that CNN networks can learn dynam-
ics of general circulation models (GCM) that together with
numerical models are widely used for weather prediction.
The input of their network was the state of GCM and their
output was the next state of GCM. This work suggest that
CNNs have the ability to process the dynamics of complex
weather systems.

In (Weyn, 2019) they compared basic CNN networks with
and without using LSTM layers to the state of the art physi-
cal model known as Climate Forecast System. Their results
show that including an LSTM layer improved the perfor-
mance when compared to a basic CNN model. However,
they were still largely lacking when it came to comparing
with CFS, a baseline for NWP models.

(Mehrkanoon, 2019) compared a basic LSTM model to a

1D and 2D CNN based model on the task of predicting
temperature from 1 to 10 days in the future. Contrary to
(Weyn, 2019), the non-LSTM architecture came out on top,
with the 2D network achieving the best performance, where
the dimensionality was increased by convolving learned
kernels over additional stations, allowing for information
sharing between the neurons responsible for every station.

A similar research question to ours was also asked and
discussed by (Düben & Bauer, 2018), who go deeper into
why deep learning could and could not be used for weather
prediction. They are also one of the several papers to use
very similar data to ours (ERA5, geopotential at 500 hPa)
and arrive at a similar conclusion that NWP models simply
still out-perform machine learning solutions.

(Larraondo et al., 2019) was an inspiration for two of the
models that we have used. Their task was, however, quite
different from ours - they model the relation between geopo-
tential and precipitation rather than forecasting.

(Weyn et al., 2020) have built the currently best-performing
model on the WeatherBench benchmark – their model man-
aged to outperform a scaled down version of an NWP
model. Compared to our version of U-net they use a shal-
lower version. Moreover, they use cubic convolution that
are better suited for 3D data.

6. Conclusions
Z500 RMSE [m2 s−2] T850 RMSE [K]

VGG-16 3131 14.11
Climatology 1075 5.51
Persistence 936 4.23
Weekly Climatology 816 3.50
Linear Regression 714 3.19
Non-continuous ConvLSTM 702 3.16
U-Net 690 3.10
U-Net ConvLSTM 686 3.10
CNN Baseline 641 2.97
CNN Isolated all levels 622 3.02
ConvLSTM Baseline 556 2.72
ConvLSTM 7 Layers 551 2.68
ConvLSTM 12 Layers 522 2.58
IFS T42 489 3.09
IFS T63 268 1.85
Operational IFS 154 1.36

Table 10. Comparison of all baselines and trained models for 3
days forecast time at 5.625◦ resolution. Models are ordered by
performance and best machine learning and physical models are
in bold.

Table 10 summarizes the results from all our experiments as
well as previously established baselines from (Rasp et al.,
2020). While the individual results of each experiment were
discussed in section 4, here we can see how our machine
learning models compare across the board to the industry
NWP models.

Starting from the CNN baseline, our improvements were
achieved by adding an initial ConvLSTM layer as well
as increasing the amount of convolutional layers in the
network, with the best network (ConvLSTM 12 Layer)
achieving a 17% lower RMSE on the geopotential Z500
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ERA5 T850 [K] t=+72h ConvLSTM (12) T850 [K] t=+72h Error ConvLSTM (12) - ERA5 T850 [K] t=+72h

ERA5 Z500 [m2 s 2] t=+72h CNN baseline Z500 [m2 s 2] t=+72h Error baseline - ERA5 Z500 [m2 s 2] t=+72h

ERA5 T850 [K] t=+72h CNN baseline T850 [K] t=+72h Error baseline - ERA5 T850 [K] t=+72h

48000 50000 52000 54000 56000 58000 48000 50000 52000 54000 56000 58000 2000 1000 0 1000 2000

240 250 260 270 280 290 300 310 240 250 260 270 280 290 300 310 7.5 5.0 2.5 0.0 2.5 5.0 7.5

48000 50000 52000 54000 56000 58000 48000 50000 52000 54000 56000 58000 3000 2000 1000 0 1000 2000 3000

240 250 260 270 280 290 300 310 240 250 260 270 280 290 300 310 10 5 0 5 10

Figure 4. Visualization of sample prediction made by ConvLSTM (12) at 3 day lead time. We can see that model managed to learn
general pattern of the data, however it is much smoother than ground truth.

data and an 11% improvement on the temperature T850
data.

Figure 4 shows the improvements of the best performing
model compared to the baseline. Specifically results of
CNN baseline in the bottom 2 rows were much "smoother"
than the ConvLSTM ones in the top 2 rows, indicating
the latter model was able to learn the spatiotemporal cor-
relations at a much finer level, thereby achieving a better
performance.

We have also found that training on all data levels (from
1 hPa to 1000 hPa) provided no apparent benefit (but in-
creased training time tenfold), which was surprising re-
sult, as we initially hoped that providing neighboring levels
would improve the model accuracy. Even without any di-
rect correlations we hoped that more data independent data
points would enable the network to learn better. But from
the results it is clear that there was no benefit.

Experimenting with gaps between time-steps also showed
that for a 3 day prediction task, providing spread out data
over 32 hours was no better than using 8 consecutive hours,
indicating that per hour changes are important for the per-
formance of predicting this short time frame.

The VGG-16 architecture was not able to capture any of the
dynamics present in our data and was by far the worst per-
forming model. U-Net showed promise, achieving similar
performance to the CNN baseline with the default architec-
ture, indicating a more fine tuned network would be able to
achieve good performance. This was confirmed in the very
recently published paper (Weyn et al., 2020), that used an
altered U-Net with a cubed sphere representation achieving
results better than IFS T42 NWP.

While our best network came closer to the IFS T42 bench-
mark, it was still very far in terms of performance compared
to the operational IFS model. This confirms that deep learn-
ing weather prediction is not yet able to compete with the
numerical weather prediction methods that have been devel-
oped and improved for over half a century. However, with
further research is done in the field and more fine tuned
models and architectures are created we hope to see ma-
chine learning models that are able to achieve comparable
performance to its numerical counterparts.
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