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Abstract
In this work I create reinforcement learning environment that simulates Anymal robotics
platform. I then use Proximal policy optimization to show that it is possible to learn
dynamic locomotion in the forward direction. However this motion relies on rapidly
varied motion and does not exhibit gait pattern. I then try to reduce this problem by
using linear interpolation, input filtering, torque cost and smoothness cost but I am
unable to train an agent that would exhibit gait pattern.

In the last section I increase the complexity of the environment by adding obstacles
that the agent has to step over. I then add ray-casting based visual input to the policy
network. Lastly I demonstrate that agent is able to learn to step over some of the
obstacles.
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Chapter 1

Introduction

Compared to wheeled designs, legged robots are much more maneuverable because
they can step over obstacles and cross over holes. Thus they can overcome complex
environment such as cave systems1 or forests2.

Legged robots usually use either hydraulic or electric actuators, hydraulic systems have
advantage of higher energy densities of conventional chemical fuel, while electric actu-
ators are limited by current battery technology (Anymal platform lasts at least 2 hours
[12]). On the other hand electric actuator offer more precision control.

In this work I have focused on Anymal platform[12] because the University of Edin-
burgh has two of these system available and even though this work is entirely based
on simulation the future work might involve porting explored methods to the physical
platform. Anymal platform is dog-like quadrupled robot with 12 joints and it can be
equipped with 3D cameras and LIDAR.

Control of the Anymal platform is a complex task, there are 12 joints that can move
continuously to any degree of rotation. This makes it highly complex space where
only small subspace leads to stable behaviour. In the last decade there have been many
breakthroughs in machine learning algorithms, particlarly AlexNet[16] demonstrated
that it is possible to train very deep convolutional networks. Deep reinforcement learn-
ing (DeepRL) is machine learning discipline that uses deep neural networks and re-
inforcement learning to train agents to operate in complex environments using only
reward signal.

There are significant challenges of using DeepRL for robotics control. Because the
agent initially has no knowledge of the robots mechanics it requires training by trail and
error. These errors might result in system damage and downtime. Moreover physical
systems have to be supervised at all time with the personal ready to use emergency stop
button. A solution is to use simulation for training and physical platform for testing

1 Robotic Systems Lab: Graph-based Path Planner: ANYmal Quadruped Robot Exploring Gonzen
Mine: https://www.youtube.com/watch?v=W9lgdmDg6UM

2SciNews: Boston Dynamics ATLAS robot walking in a forest.
https://www.youtube.com/watch?v=M7nLQpWiy1o
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8 Chapter 1. Introduction

the learned behavior. Apart from safety simulation also enables faster than real time
training[13] and parallelization[9].

The drawback of simulation based learning is that there might be significant reality
gap between the simulated environment and real environment. This can have many
causes such as delays in processing time, imperfect mechanical modelling of the robot
or different behaviour of the servomotors. [13] showed that it is possible to overcome
the reality gap and deploy trained policy to physical platform. This project focuses
only on training and testing in simulator.

The goal of this project is to simulate Anymal platform to learn walking behaviour in
non-flat environment. The first part of this report discusses training an agent in a flat
environment to establish baseline for the performance. The second part adds sensory
input to the agent and extends the environment.



Chapter 2

Background

2.1 Reinforcement learning

Reinforcement learning is a branch of Machine learning that focuses on interaction
of agent and environment; specifically learning mapping of observations of state to
actions that agent executes in order to maximize cumulative reward[21]. The goal of
this project is to develop an agent that is able to utilize visual information to navi-
gate complex terrain. In order to be able to navigate the terrain, the agent has to be
able to process visual information. Currently the best performing models at ImageNet
[5] and similar datasets are based on deep learning. Therefore it makes sense to use
deep learning techniques in reinforcement learning settings to tackle a problem of lo-
comotion in complex terrain, deep reinforcement learning is a field that combines deep
neural networks with reinforcement learning theory.

In this settings, the agent is controlled by policy πθ, where θ are parameters of the
network. In this project both action space and observation space is continuous and
therefore a stochastic policy is used. Specifically action at time-step t is defined as
at ∼ πθ(·|st). Time steps t are organized into episodes of length T . Episodes are defined
in terms of trajectories τ = (s0,a0,s1,a1, ...) describing states of the environment and
actions that agent took. The return R is then defined as cumulative discounted reward
over the trajectory. Reinforcement learning can thus be expressed as optimization
problem[2].

Reinforcement learning algorithms are then used to optimize and improve the perfor-
mance of the agent. In this project the goal was to use an existing algorithm and create
environment and rewards to learn walking behaviour.

2.2 Reinforcement learning frameworks

There are number of publicly available frameworks and libraries that implement rein-
forcement learning algorithms. The advantages of using such libraries are clear; they
are well tested, documented and optimized.

9



10 Chapter 2. Background

Most of these libraries work with OpenAI gym environment[3], this is standardized
interface that provides unified access to environment state and actions. Because of
the standardized interface we can change the RL algorithm without modifying the
environment.

Firstly there is OpenAI baselines[6] a Python package that contains implementations
of most commonly used RL algorithms. However this package is not well docu-
mented and the API is inconsistent across different algorithms it implements. Stable-
Baselines[10] is fork of the Baselines package done by researches from ENSTA Paris-
Tech. Stable baselines package is better documented and offers multiprocessing for
some of the algorithms. Multiprocessing can improve the speed of training and thus is
it an important feature.

However I have not been able to train any agents with stable baselines package. For all
experiments in this project I have used Spinning Up package from OpenAI[2]. There
are number of reasons why I have chosen this library, firstly I have been able to train
agents using this library, secondly the output of the training processing is much clearer
and lastly because they have recently added support for PyTorch[18] that I prefer over
Tensorflow[1]. This package also has a multiprocessing support using the Intel MPI
library, however this feature did not work for me because it frequently crashed.

Another RL library is RLlib[17] from Barkley BAIR lab that focuses on distributing
the training across multiple computers. This library is well documented and offers
potential gains in speed of training, unfortunately I have not been able to test it.

2.3 Simulation frameworks

Simulating the environment requires a 3d rigid body simulation. The most common
choices are MuJoCo[22], PyBullet[4] and Gazebo[15]. I have decided to use PyBullet
because it is open source and does not require license. Moreover it has been suggested
by Wouter Wolfslag1 as easier to use.

1Postdoc working with project supervisor
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Figure 2.1: Interaction of environment, agent and PD control.

2.4 PD controller

A proportional–derivative controller (variation of proportional–integral–derivative con-
troller) is used for torque control of the robot.

Specifically the torque is calculated by:

τ(x) = Kp(x− p)+Kd(0− v)

where

• x is target position of the joint

• p is current position of the joint

• v is the velocity of the joint

• kp is proportional gain (stiffness constant)

• kd is derivative gain (dumping constant)

Note that the target velocities are zero. This is not ideal for for swing motions. I
experimented with outputting target positions from agent together with target velocities
however I did not manage to get meaningful behaviour.





Chapter 3

Creating gym environment

As a starting point of this project I was provided OpenAI gym environment that inte-
grated PyBullet and Anymal 3D files 1. However this environment was undocumented
and not working therefore I had to rewrite most of the code.

The goal of the project is to develop a reinforcement learning environment that enables
agent to learn dynamic locomotion. As a start I have created the environment that
rewarded standing.

3.1 Environment

The environment provides following observations about the state:

• joint position; angle of each one of the 12 joints of the robot

• base orientation; angle with reference to the environment

• base velocity; velocity vector in m/s

• base angular velocity

Not all of these are necessary for the standing task, but they will be useful for the
walking task.

The environment is controlling time flow in PyBullet simulation, specifically each time
the environment steps the simulation it executes 1

400 seconds of action. PyBullet also
offers real-time mode of control, but using step-based control has the advantage that
the simulation can happen faster than real time and thus speed up the training process.

3.2 Cost function

There are a number of ways to reward standing, I have chosen one of the simplest re-
ward - a mean squared error of desired joint angles and current position. This approach
is less than ideal the agent is forced to learn specific posture instead of trying to find

1This code was provided by Wouter Wolfslag
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14 Chapter 3. Creating gym environment

the best stable stand. Moreover this reward is not normalized - it ranges from 0 to 2π.
However it was very simple to implement.

R =
1

12

12

∑
n=1

√
pn− tn

where p is current angle of join n and t is target position of joint n.

3.3 Action

The output of the network - action space, is interepreted as position targets for the
joins. PD controller is used to compute the torques for each joint. In this experiment
the PD constants were set as P = 65;D = 0.3. In this experiment there was only one
PD action executed for each step.

3.4 Agent

A fully connected network with two hidden layers of 64 ReLU units was used. This
network size was used because it is the default for the OpenAI Baselines package.

3.5 Training procedure

The policy was trained for 10,000 epochs where each epoch had 1,000 time-steps.
Thus each episode had 2.5 seconds of experience and overall the agent experienced
6.94 hours of time.

3.6 Results

The agent was able to learn to stand for the length of an episode after two hours of train-
ing, this result has been confirmed both by inspecting the average reward per episode
as well as inspecting the trained model visually. This result confirmed that the agent
was able to learn to counter gravitational forces and control simulated body of Anymal
robot.

The standing experiment confirmed that the Reinforcement learning loop has been set
up correctly and thus enabled me to move to the next part - learning movement.



Chapter 4

Forward motion on flat surface

In previous chapter I have estabilished that the agent is able to train with-in the envi-
ronment, the goal of this chapter was to find agent and environment configuration that
enables simple movement of Anymal robot on a flat surface.

This chapter is a list of consecutive experiments that enabled the forward motion, most
of these experiments failed or did not improve the behaviour of previous experiments.

4.1 Reward of absolute distance traveled

The motivation for this experiment was to reward the agent for absolute distance it
traveled from the origin.

R(s) =
√

x2 + y2

This experiment failed to learn. There are multiple problems with this reward, firstly
it does not reward action but position, this means that if the agent takes bad action at
later state it is rewarded more than good action at initial state.

The second problem with this reward function is that it is not normalized. Stable-
baselines “Tips and Tricks” [10] recommends to use normalized rewards and action
space for Gaussian policies such as PPO.

4.2 Normalized velocity reward

The maximum velocity of Anymal is 1.6m/s[13]. Threfore I have tried linear reward
function clipped between -1 and 1.

y = max(−1,min(1,
1

1.6
x))

this function receives highest reward of 1 at velocity of 1.6m/s. This addresses some
of the issues with previous reward.

15



16 Chapter 4. Forward motion on flat surface

However similarly to previous experiments, I was not able to achieve any meaningful
behaviour.

4.3 Early stopping

Each episode lasts at most 20s. It is stopped early if any part but the feet touches
the ground. I have tried training agent without early stopping and discouraging bad
behaviour with negative rewards, however the agent failed to learn motion forward.

Previously I have used a reward function that returned negative rewards for states with
low base height. This kind of reward led to agent learning to trigger early stopping to
stop accumulating negative return. For this reason I only use positive rewards.

4.4 Radial basis reward

After consulting the reward with Kai Yuan1, I implemented the reward using radial
basis functions. This was also inspired by a report on the same project[19].

Figure 4.1: Radial basis reward for velocity, R(vx) = e(−10(vx−0.4)2)

R(vx) = e−10(vx−vt)
2

Simply changing the reward was not enough to improve the behaviour. The second
problem with my environment was PD loop, specifically the environment was running
at 400Hz, 1 PD loop for every agent action. The problem is that because of discount

1PhD student of project supervisor
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factor of γ = 0.99. This parameter quantifies how much importance should be given to
future rewards. With the PD controller running at 400HZ a reward 1s in future will be
discounted by 0.99400 ≈ 0.02 - this is not ideal.

Increasing number of PD loops for each step from 1 to 16 preserves the 400HZ fre-
quency of the controller and improves the discounted return 1 second in future - with
25Hz the discount factor is 0.9925 ≈ 0.78. Thus the agent is considering states that are
in immediate feature.

This change also affected the amount of training time per epoch - previously the agent
would experience 2.5 seconds of training time for epoch, but with more 16 loops per
each agent step this increased to 40 seconds.

Using this reward function I was able to train the agent to move forward with target
velocity of vt = 0.4 m/s.

4.5 Results

The agent was able to achieve the maximum reward over 20s episode in 10 trials.
Visually inspecting the agent2 reveals that it learned to use its back legs stabilize itself
while using the front legs to push itself. The movements are very small and there is
no gait-like pattern. However this position is stable and the agent does not fall on the
ground.

This experiment showed that the agent is able to learn forward motion however in-
perfect it is. In the next chapter I have focused on improving the performance and
developing better ways of evaluating learned behaviour.

2Video of trained agent https://www.youtube.com/watch?v=jaPIAxIAUk4, note that the video ends
with the fall of the agent, this has been caused by increasing the time of the episode for the evaluation,
during training the episode ended before the fall.

https://www.youtube.com/watch?v=jaPIAxIAUk4




Chapter 5

Improving the forward motion

The previous chapter established that the agent is able to learn to move forward within
the simulated environment. However this movement is less than ideal, this chapter
focuses on improving the motion.

5.1 Improving the experiment procedure

5.1.1 Evaluating performance of the agents

In order to compare the performance and potential improvements I had to develop
logging and graphing functionality for trained agents. PyBullet offers logging and
plotting utilities however these don’t allow for logging of custom quantities such as
rewards and combining the graphs together.

Therefore I have created following plots utilities:

• Tracking plot - this is essentially a 2D view of where each end-effector touched
the ground. This is useful for observing the trajectory robot took and how each
of its leg behave.

• Contact plot that shows when enf-effectors touches the ground, this helps to
show whether the agent uses each leg equally or whether it relies on some of the
legs to stabilize itself.

• PD controller plot that shows relation between output of the policy and how it
was interpreted using PD controller.

• Reward graph - plotting different rewards received at each step.

• Graphs for all observable quantities from the PyBullet - these include angular
velocities, reaction forces and applied torques.

• Plots of the unfiltered and filtered observation about joint positions. The filtering
is explained in later section in this chapter.

19



20 Chapter 5. Improving the forward motion

5.1.2 Increasing reproducibility of the experiments

Adding new features quickly increased code complexity; in particular in order to be
able to run the older experiments I had to preserve the code that was used to train the
models.

To an extent Git versioning system does provide this functionality - one can always
revert to the commit that contains the trained model. This approach however does not
enable to easily fix errors in code that does not influence the training process such as
logging and plotting. In order to see how particular experiment compared to previous
result it is sometimes needed to regenerate the plots.

Therefore I have create my own solution where each experiment is defined by a folder
containing JSON configuration file and trained models. The configuration file contains
following information:

• Initialization arguments for the environment. These are mostly flags and con-
stants to enable new behaviour. To add a new feature to the environment I would
then add a flag of the feature that is turned off by default.

• Configuration for the training procedure such as number of epochs and steps per
epoch.

• Policy configuration such as network type and size.

This experiment setup is easy to inspect and change. All configuration is versioned in
Git repository.

5.2 Improving the agent

5.2.1 RL Algorithm selection

Motivation behind this experiment was to find the best performing reinforcement learn-
ing algorithm, previously I have established that training with PPO[20] works, but I
have not tried alternatives. Because OpenAI Gym uses standardized interface it did
not require significant effort to set-up these experiments.

I had following requirements for reinforcement learning algorithms:

• It needs to work with continuous input and output space.

• It should work with Tensorflow or PyTorch models because in following experi-
ments the input space will include visual data.

• The training should take less than 10 hours on my computer - Intel(R) Core(TM)
i9-9900K CPU @ 3.60GHz, with 64 GB of RAM and NVIDIA GeForce RTX
2080 GPU.

• It needs to be implemented by well maintained python package; either Spinning
up [2], OpenAI baselines 1 or Stable-Baselines package[10].

1https://github.com/openai/baselines
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OpenAI Spinning up [2] documentation has bench-marking for several MuJoCo en-
vironments2, the most similar to this project is ”Ant” because it involves movement
of agent in 3D environment. Results from the benchmark show that the best perfor-
mance was achieved using Twin Delayed Deep Deterministic policy gradient algorithm
(TD3)[7] and Soft Actor-Critic (SAC)[8] algorithms.

In this benchmark PPO[20] performed significantly worse then TD3 or SAC, however
as authors note[2]:

The Spinning Up implementations of VPG, TRPO, and PPO are overall a
bit weaker than the best reported results for these algorithms. This is due
to the absence of some standard tricks (such as observation normalization
and normalized value regression targets) [...]

The TD3[7] also compared various algorithms (page 7), interestingly compared to
Spinning Up benchmark, SAC performed significantly worse in Ant-v1 environment.
However in SAC[8], SAC outperformed TD3. It is unclear where the discrepancy
between these results comes from.
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Figure 5.1: Average return per epoch, for PPO this refers to training, whereas for SAC
and TD3 it refers to average test episode return. It is is clear that PPO outperforms both
of these algorithms.

To select optimal algorithm I have decided to compare TD3[7], SAC[8] and PPO[20].
Average episode returns are plotted at figure 5.1. All experiments were run with default
hyper-parameters from OpenAI Spinning Up framework. It is not clear why both SAC
and TD3 performed worse than reported results in OpenAI benchmark. Furthermore
average PPO training took 11.5s per episode while SAC took 52.6s and TD3 50.4s,

In conclusion PPO clearly outperforms both SAC and TD3 and is much faster to
train.For proper comparison it would be necessary to find better hyper-parameters for

2https://spinningup.openai.com/en/latest/spinningup/bench.html

https://spinningup.openai.com/en/latest/spinningup/bench.html
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SAC and TD3 algorithms, this is however unnecessary for this project because PPO
trains good enough.

5.2.2 Network size

The motivation behind this experiment was to find the best performing network size
and architecture. This experiment was quite limited in scope, I have only explored
network sizes: I did not explore changing activation unit or exploring different network
design.
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Figure 5.2: Comparison of different number of hidden units. All networks used ReLU
activation function. Note this graph has been smoothed.

From figure 5.2 it is clear that smaller networks outperform bigger networks. This was
unexpected result to me, I have expected the larger networks to be able to perform at
least as good as a smaller networks. It is possible that the larger networks need more
episodes to train.

5.3 Increasing smoothness of the movement

5.3.1 Linear interpolation of actions

The learned policies managed to move forward but the movement was not very fluid,
the transitions from one state to another were abrupt. One approach to reduce this is
interpolate action with previous actions.

This is very simple interpolation method, we calculate each target value for PD con-
troller as follows:

τi = τ(
x′− x

16
i)

where



5.3. Increasing smoothness of the movement 23

• x is target position of the joint given by agent

• x′ is previous target position

• i is the index of the current PD step ranging from 1 to 16
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Figure 5.3: This graph shows three different positions of the agent, ”Desired positions”
refer to positions as outputted by the policy network, ”Positions” refer to actual ground
truth positions at each timestep. Finally interpolated positions refer to interpolated po-
sitions that were used as an input for PD controller.

Figure 5.4 shows an example of learned behaviour. The policy learned to work within
linear interpolation, as a means to control the interpolated controller the outputs of the
policy are far apart from one state to another and relying on interpolation to ”smooth”
the action between the extremes. From the Figure it is also clear that PD controller is
not working correctly. One explanation is that P (proportional) constant used in this
experiment - 125 is too small and therefore agent does not react quick enough. Other
possible explanation is that PD controller does not work well with moving targets.

Overall linear interpolation did not measurably improve learned behaviour.

5.3.2 Torque cost

The motivation behind torque cost is to reduce the jittery movement of the robot. By
constraining the torque the policy has to work with the angular momentum of the joints
and therefore the actions should be smoother and less jittery.

In this experiment I have added radial basis function that penalizes sum of torques used
throughout each PD loop. I have inspected previously trained policies and calculated
that average sum of PD torque over 100 runs is around 600Nm. Therefore I have
decided that the agent reward should be centered around value of 300.

Retraining the agent with torque cost did not improve the before-mentioned issues.
The agent did not learn to maximize the reward, it is able to occasionally obtain it but
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Figure 5.4: Torque reward of e−0.00005(x−300)2
, where x is the sum of torque executed

over the 16 actions of PD loop.

it does not get score this reward regularly unlike other rewards. It is possible that more
thorough search for target value is necessary.

5.3.3 Smoothness cost

The motivation behind this experiment was similar to torque cost - decrease sudden
changes in actions from one action, state pair to another. Smoothness cost[14] has also
been used in similar setting [13]. It is defined as norm of a difference between previous
action and current action‖xt−1− xt‖.
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Figure 5.5: Example of PD control of policy trained with smoothness cost. The action
seems less abrupt fron one state to another.

As demonstrated by figure 5.5 the actions give by the policy seem to less abrupt from
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one state to another. Overall there is visually a slight increase in smoothness of the
movement.

5.3.4 Butterworth filter

In previous two experiments I have focused on reward shaping to improve the move-
ment of the agent. Motivation behind this experiment is similar. The hypothesis of
this experiment that abruptly changing observation cause the policy to have abruptly
changing output. Therefore smoothing the input should result in smoother output. But-
terworth filter 3 of order 1 with cut-off frequency of 10 was used to test this hypothesis.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time in seconds

0.4

0.2

0.0

0.2

0.4

Po
sit

io
n

Real positions
Butterworth filter

LF_KFE position

Figure 5.6: Example of filtered observation using provided Butterworth filter. The input
is slighlty delayed. We can see that the filtered output is much smoother and is following
the same trends as the input. However some of the peaks are lower than in real data.
It is unclear how important this is.

From figure 5.6 we can see that the input filtering works well and the observation
for the policy are indeed smoother. However as the figure 5.7 illustrates the resulting
movement is not smoother. Visual inspection of trained behaviour also confirmed that
the filtering have not improved the behaviour.

5.4 Side reward

Using forward reward on itself proved enough to train the agent to move forward,
however the direction of the robot was not straight, it turned about 10’ to the left. To
encourage moving in straight line I added side reward of e(−v2

y). This reward encour-
ages the agent to minimize y velocity.

Altogether my reward function is defined as:

3provided by Kai Yuan
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Figure 5.7: Example of policy actions used for PD control, note that this is same episode
and time as figure 5.6. The positions don’t seem to follow any trajectory and seem to
be changing abruptly.

R(v) = 0.8e−10(vx−0.4)2
+0.2e(−v2

y)

This reward managed to reduce the agent turning behaviour, in 10 trails the agent ended
only about 2 degrees of the desired heading.

5.5 Uneven terrain

Throughout the experiments I have worked with perfectly flat ground. In this environ-
ment it might be risky for agent to lift the feed above the ground because it is more
unstable position that has higher chance of early termination.

Hees 2017 et al[9] write:

we believe that training agents in richer environments and on a broader
spectrum of tasks than is commonly done today is likely to improve the
quality and robustness of the learned behaviors – and also the ease with
which they can be learned. In that sense, choosing a seemingly more com-
plex environment may actually make learning easier.

In this experiment I have replaced the flat ground with triangular mesh with varying
height. I have also randomized starting position so that agent does not memorize the
terrain. The agent had no observation about the terrain.

From the video4 it is clear that agent learned to walk on the uneven terrain, it also
managed to learn to overcome fall-like situations. Previously the policy learned to
use its right rear leg to safe-guard itself against fall, this has improved on the uneven

4https://www.youtube.com/watch?v=uNoX9mdFy88

https://www.youtube.com/watch?v=uNoX9mdFy88
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terrain - the policy uses the legs more proportionally. However agent still uses very
small steps to push itself forward, it did not seem to develop gait-like pattern.

5.6 Incremental action
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Figure 5.8: Example of PD targets given by incremental action. The targets are much
smoother and there is a less variation fron one state to another.

The environment interprets the action provided by agent as a target joint positions that
are then used as input for the PD control. But as was seen in previous experiments the
action from one state to another can vary greatly. In this experiment the action given
by the policy is interpreted as an update of the target position rather than position. The
hypothesis is that it is simpler to learn to output small updates rather than the positions
itself.

The target positions for the PD control is thus calculated as pt = pt−1 +a, where a is
the action given by policy.

Overall this approach worked better than others, the step size of each step increased.
However as noted illustrated by figure 5.9 the policy still relies on using rear legs for
stabilization and does not exhibit gait-like pattern.

5.7 Results

The goal of this chapter was to improve the learned behaviour from previous chapter
and increase stability and step size of the agent. While none of the experiments above
resolved these issues there were small improvements.

Firstly because I have created plotting utilities for trained policies I was able to resolve
issues with PD controller. I have also increased reproducibility of the experiments by
separating configuration of the experiments from the code. This change made it easier
to compare experiments under the same settings.
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Figure 5.9: Graph of feet contacts during an example episode of incremental action
experiment. The learned policy relies on the rear legs for stabilization as can be seen
by higher intensity of floor contacts by rear feet. Occasionally the policy makes larger
step by both front legs.

I have empirically verified that PPO[20] outperforms both SAC[8] and TD3[7]. This
was unexpected as other benchmarks showed that PPO performs worse in different ex-
periments. Furthermore I have empirically found that smaller networks tend to perform
better at this task and generally train faster.

The majority of my effort went into increasing smoothness and stability of the move-
ment. To that end I have tried linear interpolation of action, torque cost and Butteworth
none of which proved effective. Adding smoothness cost directly to the reward calcu-
lation proved to be the most effective and simple way to reduce the abrupt action from
one state to another.

I have also showed that adding side reward successfully improved the direction of the
movement while being very easy to implement.

Experimenting with more complex environment - using triangular mesh with varying
height improved the movement of the agent. The relationship between environment
complexity and learned behaviour should be investigated further.

Lastly changing the policy to output updates of the desired position instead of the val-
ues themselves showed promise, in particular some of the learned movement exhibited
large swing-like behaviour that suggest that agent based on this mechanism should be
able to learn larger steps.



Chapter 6

Learning walking behaviour with
vision

In previous chapters I have demonstrated that the policy is able to learn motion forward.
While I was unable to achieve gait-like behaviour in none of the experiments it was
still worth-while to explore if more complex environment would improve the learned
behaviour.

6.1 Adding obstacles to the environment

In order to increase complexity of environment five rectangular steps with increasing
height. The height of the lowest step is 5cm and the highest one is 10cm. Progressively
increasing obstacle size has also been done by Hees 2017 et al[9], one motivation
is to allow agent learn the behaviour on simple problems before encountering more
challenging problems. Other motivation is to filter bad policies - in order to score the
reward agent has to move forward and therefore the obstacles can be viewed as filtering
mechanism.

The obstacles are placed far enough from each other so that the body of the robot would
in between them.

6.2 Visual input

PyBullet simulator has a built-in camera that allows to obtain image color image from
any location, it also allows to control field of view. It also provides depth map for each
image. However using this method proved to be too slow during the training. Training
of single epoch without visual input takes approximately 10 seconds, after adding the
image data using the built-in camera this increased to over 400 seconds. This would
make some of the previous experiments prohibitively long to train.

Another option is to use PyBullet ray-casting function. This function takes an input
of rays defined by their origin and destination and returns their hit-ratio. This enables

29
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Figure 6.1: Illustration of obstacles in the environment. Notice that they are incresingly
higher. This is done to stimulate the learning process.

Figure 6.2: Visualization of two configuration of ray-casting camera. Note that this is
just an example, I did not use as many rays in any of the experiments. Initially I have
developed the configuration on the right, this was motivated by field of vision of four
legged animals. However inspecting the ray-casting visualisation it is clear that this
configuration is not particularly useful for objects in very near distance. It is thus far
more useful to monitor the area bellow the main body as it enables agent to see the
obstacles it is stepping over. This is important because the policy only has information
about current state - it has no memory and thus would not be able to remember that it
is stepping over obstacle.

to reconstruct depth map of the environment. Using ray-casting was much faster than
using built-in camera, the average epoch took only about 13s to train this method.
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6.2.1 Representation of the ray-casting data

I have explored two different approaches to representing the data from ray casting.
The first option is to use hit-ratio of the rays. However this depends on the way rays
are formed. If the rays destination is calculated as subset of spherical surface than for
example the information about ground will not have linear representation. It is not
clear it is then possible to use convolutional neural networks on this type of data. It is
also possible to construct ray destination as a rectangular grid under the agent body,
the z-coordinates for the hit are then all equal.

Another option is to use the z-coordinates of the hits. This way we can obtain height
map of the environment. This representation is more similar to 3D-cloud representa-
tion obtained by LIDAR sensor.

I have implemented all of these approaches the only approach that experimentally
yielded results was the rectangular grid under the body of the agent.

6.3 Experimenting with convolutional neural networks

In the last decade we have seen that deep convolutional networks tend to work much
better at image recognition than other models[16]. Using convolutional neural net-
works to process the visual input of the agent is thus a promising approach.

Using CNN for this task was not straight forward because the observation space of
the environment contains two types of data, firstly visual information that needs to
be processed by CNN and then state observation such as joint angles that need to be
processed separately.

I have created a network that uses convolutional layers to processes the visual input,
the output of the convolutional layers is then concatenate with state information and
fed into fully connected neural network.

However this approach did not work better than simple fully connected ReLU network.
This is possibly because the environment is very simple and does not contain complex
shapes. Another explanation is that the method to obtain visual information - ray
casting was not dense enough to enable the network to develop edge detection of the
obstacles.

6.4 Exploitation of environment weaknesses

During the training it became clear that the environment reward and setup allowed
agent to learn behaviour that scored high reward while not exhibiting intended be-
haviour. In one such instance the agent learned to perform swing like motion that
achieved high velocity reward but did not actually move forward1. This behaviour was
prevented by withholding any reward unless agent moves forward - specifically that
base position increases compared to previous states in current episode.

1Video of learned swing motion: https://www.youtube.com/watch?v=3IDIsS-QcnQ

https://www.youtube.com/watch?v=3IDIsS-QcnQ
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In another instance the policy learned to walk around the steps 2. This behaviour was
prevented by early termination of the episode whenever agent base is detected to be
more than 1.5 metres away from y = 0 trajectory.

In both of these examples the cheating behaviour was conditioned on stepping over the
first step. It is possible that the agent does not have enough information about the back
of the body and thus it is more challenging to control rear legs.

6.5 Experimenting with Incremental action

6.5.1 Motivation

In previous experiments I have used positional control where actions given by policies
were interpreted as position targets for the PD controller. In Section 5.6 I have ex-
plored using different type of control that sometimes exhibited larger steps. Previous
experiments showed that the policies that have not used incremental actions were using
small steps and thus were unable to step over the obstacles.

6.5.2 Methods

Fully connected network of three hidden ReLU layers of sizes 256, 128 and 64 is used.
This network is larger than in previous experiments because the agent has larger input
space and has to navigate more complex environment. Rest of the environment and
setup is identical to before-mentioned experiments.

6.5.3 Results

In some cases the agent is able to overcome up to 10cm high obstacles 3. In none of
the episodes the agent managed to fully finished the episode, all episodes ended with
early termination.

The agent seems to be relying on visual input for aligning itself, often it corrects its
heading before the obstacle. It is unclear why this is happening as it it has angle
information in the state dimension. The motion of the agent seem very unstable and
unreliable.

2Video of agent walking around the steps:https://www.youtube.com/watch?v=lp2 LQOe14Y
3Video of agent stepping over the steps: https://www.youtube.com/watch?v=YQlgzkUqV6Y

https://www.youtube.com/watch?v=lp2_LQOe14Y
https://www.youtube.com/watch?v=YQlgzkUqV6Y
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Figure 6.3: Feet position illustrating learned behaviour. Compared to previous policies
the agent uses its legs more equally and overall the step size increased. However it still
uses some of the legs for support more than others, specifically left front leg and rear
right legs are used more than the other two legs.





Chapter 7

Conclusions

The goal of this part of the project was to develop reinforcement learning system that
simulates Anymal robotics platform and simultaneously find an agent configuration
that demonstrates forward locomotion.

Chapter 3 demonstrates simplest possible version of the simulated environment and
demonstrates that an agent is able to learn with-in this environment using Proximal
policy optimization. In the following chapter I have modified the environment to
demonstrate that forward locomotion is possible. Thus the goal of locomotion has
been achieved, however the learned behaviour is far from ideal, the motion relies on
small steps that vary significantly from one state to another.

Chapter 4 focuses on improving results from chapter 3. I have explored different
network sizes, unexpectedly small networks performed better and learned faster than
larger networks. Bench-marking different reinforcement learning algorithms demon-
strated that PPO[20] in this particular task learns faster than both TD3[7] and SAC[8],
this is contrary to previously reported bench-marks, however I have not performed
hyper-parameter tuning for these algorithms and therefore the results are inconclusive.

With the goal of achieving gait pattern I have explored using torque cost, linear in-
terpolation, smoothness cost and Butterworth filter. Linear interpolation increased the
variance of actions from one state to another, with policy relying on interpolation to
average these differences. Add a torque cost factor to reward function did not increase
fluidity of movement, overall policies don’t score high on this reward and thus it is
possible that this cost require more extensive fine-tuning. A different approach to re-
duce abruptly changing actions was to use Butterworth filter to smooth input signal.
However this approach did not yield any improvement. Adding explicit smoothness
cost to reward was the only approach that worked however the improvement was not
significant.

I have also investigated whether more complex environment (with triangular mesh in-
stead of flat ground) improves the behaviour of learned policy. I did find improvements
of the learned forward motion, specifically the agent learned to increase the height of
the steps in order not to fall.
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In the last chapter I have explored extending the input space with sensory input. Specif-
ically I added ray-casting based visual information and extended the environment by
adding obstacles into agents direct path. I have then demonstrated that policy is able to
learn to walk over some of these obstacles. However the motion of the agent is highly
unstable and gimmicky. Nevertheless this experimented verified that this approach is
viable.

In conclusion I did not achieve gait in none of the experiments. However the agents
demonstrated complex behaviour and thus I believe I have partially completed basic
goals of this project.



Chapter 8

Future work

It is clear that learned behaviour demonstrated in this report is less than satisfactory.
The first task for next year is to improve the motion of the agent, specifically the goal
is to achieve a gait pattern for the forward locomotion. One way to achieve this is to
find working torque cost.

The most interesting question that arose from this project was the role of the complex-
ity of environment on the learned policy. Gibson environment[23] created complex
PyBullet environments from 3D scans of real world indoor spaces. One of the goals is
then to try to achieve locomotion with Anymal system in one of the Gibson environ-
ments.

Throughout this project I have also struggled with training process, specifically the
time required to train the model. Reducing this time with parallelization would enable
more complex experiments. RLLib[17] is an reinforcement learning library designed
specifically with these goals and thus I intend to try to use instead of Spinning up[2].

Lastly I would like to explore more complex neural networks. In this project I have
only used very simple networks that utilized information about current state. Hwangbo
et al[13] used observation from previous states, this approach is worth exploring. An-
other possibility is to use recurrent neural networks or more specifically Long Short-
Term Memory Networks[11] as they are designed to for processing time-series data.
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